Recently, the official website gave the performance test report of RedisJson (RedisSearch), which can be described as crushing other NoSQL, the following is the core report content, first conclusion:
-
For isolated writes, RedisJSON is faster than MongoDB 5.4x, more than 200x faster than ElasticSearch.
-
For isolated reads, RedisJSON is 12.7 times faster than MongoDB and more than 500 times faster than ElasticSearch.
In mixed-workload scenarios, real-time updates don’t impact search and read performance with RedisJSON, while ElasticSearch does. Here’s the specifics:
-
RedisJSON* supports about 50 times more operands/sec than MongoDB and 7x/sec more than ElasticSearch.
-
RedisJSON* has about 90x lower latency than MongoDB and 23.7x lower latency than ElasticSearch.
In addition, RedisJSON’s read, write, and load search latencies are far more stable than ElasticSearch and MongoDB in higher percentiles. As the write ratio increases, RedisJSON also handles higher and higher overall throughput, while when the write ratio increases, ElasticSearch decreases the overall throughput it can handle.
Query engine
1. Load Optimization
The next two graphs show the results of running the NYC taxi benchmark. The benchmark measures fundamental data such as throughput and load time.
As you can see from these charts, each new version of Reresearch has a substantial performance improvement.
2. Full-Text Search Optimization
To evaluate search performance, we index 5.9 million Wikipedia abstracts. Then we run a full-text search query panel and get the result as shown in the following figure
class=”rich_pages wxw-img js_insertlocalimg” src=”https://mmbiz.qpic.cn/mmbiz_png/icu8ekKAcwiaa4qnSe9kIHMKTMfQHHo2BjtFxGXZJ4JfYYl38GAkt7OIsURibHWKyfNWhmuiceGicQIygtFm1TSiaNkg/640?wx_fmt=png”>
As can be seen from the above figure, by migrating from v2.0 to v2.2, the same data has been greatly improved in terms of writing, reading, and searching (latency graph), thereby improving the achievable throughput of running Search and JSON.
Comparison with other frameworks
1. Benchmark This
test, we used the following software environment:
-
ElasticSearch 7.15
-
RedisJSON (RediSearch 2.2+RedisJSON 2.0)
> MongoDB v5.0.3
This time benchmarking on Amazon Web Services instances, all three solutions are distributed databases and are most commonly used in a distributed manner in production. That’s why all products use the same generic m5d.8xlarge VMs and on-premises SSDs, and each setup consists of four VMs: one client + three database servers. Both the benchmark client and database server run on separate m5d.8xlarge instances under optimal network conditions, tightly packed in an Availability Zone for the low latency and stable network performance required for steady-state analysis.
The tests were performed on a three-node cluster and the deployment details were as follows
:
-
MongoDB 5.0.3: Primary-Secondary-Secondary. Replicas are used to increase read capacity and allow for lower latency reads. To support text search queries on string content, a text index is created on the search field.
-
ElasticSearch 7.15: 15 sharding setups that enable query caching and provide RAID 0 arrays for 2 NVMe-based local SSDs for higher levels of file system-related resilient operational performance. These 15 shards provide the best achievable performance results for all the sharding variants we have made for Elastic.
-
Redis Cluster v6.2.6, with 27 shards, evenly distributed across three nodes, loaded with RediSearch 2.2 and RedisJSON 2.0 OSS modules.
RedisJSON*: RediSearch 2.2 and RedisJSON 2.0: OSS
2. 100% write to the baseline
As shown in the chart below, the benchmark shows that RedisJSON* ingests 8.8x faster than ElasticSearch and 1.8x faster than MongoDB, while maintaining sub-millisecond latency for each operation. Notably, 99% of Redis requests complete in less than 1.5 milliseconds.
In addition, RedisJSON* is the only solution we’ve tested that automatically updates its indexes on every write. This means that any subsequent search queries will find the updated document. ElasticSearch doesn’t have this fine-grained capacity; It places ingested documents in an internal queue that is refreshed every N documents or every M seconds by the server (not controlled by the client). They call this approach near real-time (NRT). The Apache Lucene library, which implements the full-text capabilities of ElasticSearch, is designed to search quickly, but the indexing process is complex and cumbersome. As these WRITE benchmark charts show, ElasticSearch comes at a significant cost due to this “design” limitation.
Combining latency and throughput improvements, RedisJSON* is 5.4x faster than Mongodb and more than 200x faster than ElasticSearch for isolated writes.
3. The 100% read benchmark
is similar to writes, and we can observe that Redis performs best in terms of reads, allowing 15.8x more reads than ElasticSearch and 2.8x more than MongoDB, while maintaining sub-millisecond latency across the entire latency range, as shown in the table below.
When combined with latency and throughput improvements, RedisJSON* is 12.7x faster than MongoDB and more than 500x faster than ElasticSearch for isolated reads.
4. Mixed
read/write/search benchmark
real-world application workloads are almost always a mix of read, write, and search queries. Therefore, it is more important to understand the resulting mixed workload throughput curve as you approach saturation.
As you can see in the chart, constantly updating data and increasing the write ratio on RedisJSON* does not affect read or search performance and improves overall throughput. The more updates you make to your data, the greater the impact on ElasticSearch performance, ultimately resulting in slower reads and searches.
The evolution of ops/sec
that ElasticSearch can achieve from 0% to 50%, we noticed that it started with 10k Ops/sec on the 0% update benchmark and was severely affected, reducing ops/sec by 5x at the 50% update rate benchmark.
Similar to what we observed in the single operational benchmark above, MongoDB search performance is orders of magnitude slower than RedisJSON* and ElasticSearch, with MongoDB having a maximum total throughput of 424 ops/sec and RedisJSON* having a maximum ops/sec of 16K.
Finally, for mixed workloads, RedisJSON* supports 50.8x more operations/sec than MongoDB and 7x more than ElasticSearch. If we focus our analysis on latency for each operation type during a mixed workload, RedisJSON* reduces latency by up to 91x compared to MongoDB and 23.7x compared to ElasticSearch.
5. Complete latency analysis
Similar to measuring the throughput curve generated before each solution saturates, it is important to perform a complete latency analysis under sustainable loads that are common to all solutions. This will enable you to understand what is the most stable solution in terms of latency for all published operations, and which solution is less susceptible to latency spikes caused by application logic (for example, elastic query cache misses). If you’d like to dive deeper into why we do this, Gil Tene provides an in-depth overview of delay measurement considerations.
-
looking at the throughput chart in the previous section and focusing on 10% Updating the baseline to include all three operations, we did two different sustainable load variations:
-
250 ops/sec: Comparing MongoDB, ElasticSearch and RedisJSON*, lower pressure rates than MongoDB.
-
6000 ops/sec: Compares ElasticSearch and RedisJSON*, lower than ElasticSearch pressure rates.
1 Latency analysis for MongoDB and ElasticSearch and RedisJSON*
In the first image below, showing percentiles from p0 to p9999, it’s clear that MongoDB performs far better than Elastic and RedisJSON* on every search. Also, looking at ElasticSearch vs. RedisJSON*, it’s clear that ElasticSearch is vulnerable to higher latency, most likely caused by garbage collection (GC) triggers or search query cache misses.
RedisJSON* has a p99 of less than 2.61 milliseconds, while ElasticSearch p999 searches have reached 10.28 milliseconds.
In the read and update chart below, we can see that RedisJSON* performs best across all latency ranges, followed by MongoDB and ElasticSearch.
RedisJSON* is the only solution to maintain sub-millisecond latency across latency percentiles for all analyses. At p99, RedisJSON* has a latency of 0.23 ms, followed by MongoDB with 5.01 ms and ElasticSearch with 10.49 ms.
At write time, MongoDB and RedisJSON* maintain sub-millisecond latency even at p99. ElasticSearch, on the other hand, shows high tail latency (> 10ms), which is most likely the same cause (GC) that caused the spike in ElasticSearch search.
2. Latency analysis for ElasticSearch and RedisJSON
RedisJSON* retains 3ms p99 when updating, while ElasticSearch retains 167ms p99.
Focusing on search operations, ElasticSearch and RedisJSON* start with single-digit p50 latency (1.13 ms for p50 RedisJSON* versus 2.79 ms for ElasticSearch), where ElasticSearch pays the price of GC triggers and query cache misses on higher percentiles, clearly visible on >= p90 percentiles.
RedisJSON* keeps p99 below 33 milliseconds, compared to 163 milliseconds on ElasticSearch, which is 5x higher.
Source:
Source: xiangzhihong8
link: https://blog.csdn.net/xiangzhihong8/article/details/121530019
end
public number (zhisheng ) reply to Face, ClickHouse, ES, Flink, Spring, Java, Kafka, Monitor keywords such as to view more articles corresponding to keywords. like + Looking, less bugs 👇